
# Standard materials

|                     |           |               | Q series      |                | F series                |           |           |  |
|---------------------|-----------|---------------|---------------|----------------|-------------------------|-----------|-----------|--|
|                     |           | Qxx-02512     | Qxx-05012     | Qxx-10012      | Fxx-02512               | Fxx-05012 | Fxx-10012 |  |
| Dielectric<br>Layer | Material  | LCP Fi        | lm "Vecstar™' | ' СТQ          | LCP Film "Vecstar™" CTF |           |           |  |
|                     | Thickness | 25µm          | 50μm          | 100μm          | 25µm                    | 50μm      | 100µm     |  |
| Copper              |           |               |               | ED Copper Foil |                         |           |           |  |
| Foil<br>Layer       | Thickness | nickness 12µm |               |                | 12µm                    |           |           |  |

Roll Width: 250mm or 520mm

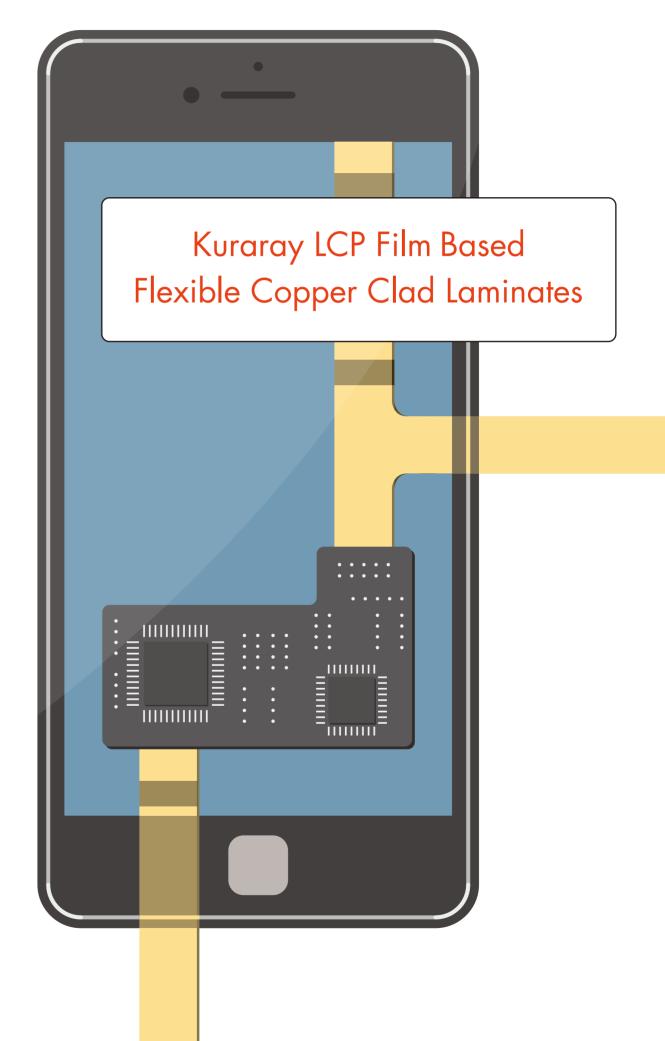
## Applications



# Properties of dielectric layer (LCP Film "Vecstar™")

| Property                           | Test condition                               | Unit  | Q series | F series |
|------------------------------------|----------------------------------------------|-------|----------|----------|
| Tensile strength                   | Kuraray method                               | MPa   | 180      | 190      |
| Elongation                         | Kuraray method                               | %     | 30       | 40       |
| Tensile modulus                    | Kuraray method                               | MPa   | 3,600    | 3,100    |
| Melting temperature                | Kuraray method (DSC)                         | °C    | 310      | 280      |
| Coefficient of thermal expansion   |                                              |       | 15       | 18       |
| Breakdown voltage                  | IEC60243-1                                   | kV/mm | 200      | 200      |
| Moisture absorption                | Kuraray method (23℃, 50%R.H.)                | %     | 0.04     | 0.04     |
| Dielectric constant (Dk)           | Fabry-Perot method                           | -     | 3.3      | 3.3      |
| Dielectric dissipation factor (Df) | (25℃, 28GHz, xy direction)                   | -     | 0.002    | 0.002    |
|                                    | Kuraray method<br>(HCl, 2mol/L, 23°C, 5min)  | -     | Pass     | Pass     |
| Chemical resistance                | Kuraray method<br>(NaOH, 2mol/L, 23°C, 5min) | -     | Pass     | Pass     |
|                                    | Kuraray method<br>(IPA, 23°C, 5min)          | -     | Pass     | Pass     |

- The data in this brochure presents typical values that are not guaranteed. Feel free to contact the following department for more details.
- Before using the information and data, be sure to conduct a sufficient examination under your operating conditions and check
  if the performance meet your requirement.
- $\bullet \ \text{When using Kuraray's FCCL, please confirm the related law and regulations for your applications.}$
- Precautions should be taken in handling and storing. Please refer to the Safety Data Sheet (SDS) for further safety information.
- Kuraray's FCCL should not be applied for human body and food contact applications, including devices for medical and healthcare. Especially, Kuraray's FCCL should not be applied to any devices intended for implantation in the human body.
- The information contained herein could change without notice.


#### KURARAY CO., LTD.

Vecstar Business Promotion Department, Research and Development Division https://www.kuraray.com/ "Vecstar" is registered trademark or trademark of Kuraray Co., Ltd.

Date of revision : June ,2019

# **kura**ray

**Developing Materials** 




# Kuraray LCP Film Based Flexible Copper Clad Laminates

Kuraray's FCCL is flexible copper clad laminates (FCCL) made of Kuraray's liquid crystal polymer (LCP) film "Vecstar™" developed by Kuraray's proprietary technology. It shows excellent electrical properties suitable for high speed transmission line and high frequency electric devices.



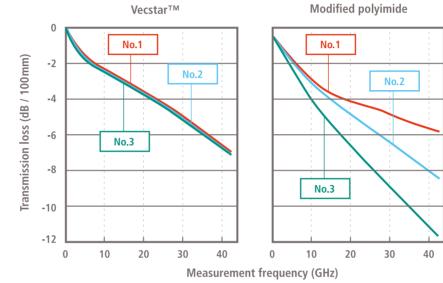
#### **Structure** Single Side Copper Clad Laminates

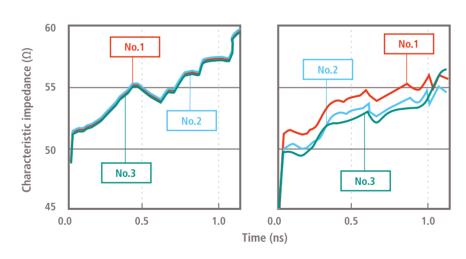


- → Advantages 
  ├
- 1 | Excellent Dimensional stability
- 2 | Excellent adhesion to low-profile copper foil
- 3 | Excellent adhesion to other materials in multilayer stack up

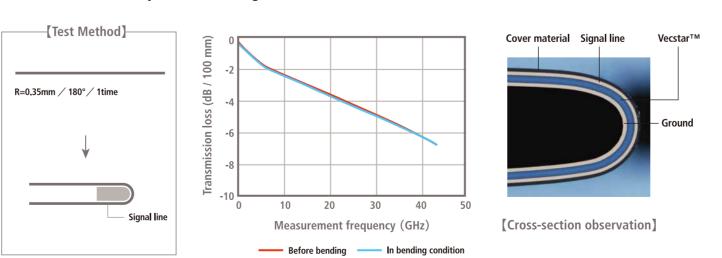
### **Properties**

|                           |                                      |                                                 |          |                       | Q series                      |                       | F series              |
|---------------------------|--------------------------------------|-------------------------------------------------|----------|-----------------------|-------------------------------|-----------------------|-----------------------|
| Property                  | Test condition                       |                                                 | Unit     | Qxx-02512             | Qxx-02512 Qxx-05012 Qxx-10012 |                       | Fxx-05012             |
|                           |                                      | After Etching, MD                               |          | -0.02                 | 0.00                          | 0.01                  | 0.00                  |
| Dimensional               | Kuraray method                       | After Etching, TD                               | <b>%</b> | -0.01                 | 0.00                          | 0.00                  | 0.01                  |
| stability                 | Kuraray metilou                      | After Baking (150°C, 30min), MD                 |          | -0.04                 | -0.01                         | 0.01                  | -0.02                 |
|                           |                                      | After Baking (150℃, 30min), TD                  |          | 0.02                  | 0.02                          | 0.01                  | 0.05                  |
| Peel strength             | Kuraray method                       | 90°peel                                         | N/mm     | 1.0                   |                               | 0.7                   |                       |
| Flammability              | _                                    | UL94                                            | _        |                       | VTM-0                         |                       | VTM-0                 |
| Solder heat               |                                      | Solder float at 288℃,<br>30sec                  | _        | Pass                  |                               |                       | Pass<br>*260°C, 30sec |
| resistance Kuraray method |                                      | Solder float at 288℃,<br>30sec afetr C-96/40/90 | _        | Pass                  |                               |                       | Pass<br>*260℃, 30sec  |
| Volume resistance         | JIS C6471                            | At normal temperature                           | Ω·cm     | >1.0×10 <sup>16</sup> |                               |                       | >1.0×10 <sup>16</sup> |
| Totalile resistance       | 313 60 17 1                          | After moisture absorption<br>C-96/40/90         |          | >1.0×10 <sup>16</sup> |                               | >1.0×10 <sup>16</sup> |                       |
| Surface insulation        | JIS C6471                            | At normal temperature                           | Ω        | >1.0×10 <sup>12</sup> |                               |                       | >1.0×10 <sup>12</sup> |
| resistance                | After moisture absorption C-96/40/90 |                                                 | 72       | >1.0×10 <sup>12</sup> |                               |                       | >1.0×10 <sup>12</sup> |
| Bending resistance        | JIS C6471                            | Without coverlay                                | times    | >9,600                | >1,400                        | >140                  | >1,800                |


#### MD: Machine Direction, TD: Traverse Direction

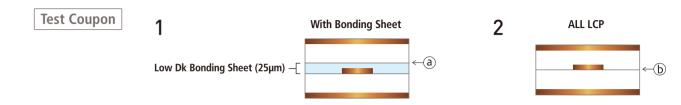

#### **Transmission**




- "Vecstar™" is a low transmission loss material in high frequency range.
- Transmission loss and characteristic impedance are stable under high humidity condition.

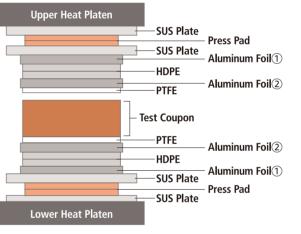
| No. |   | Pretreatment conditions |
|-----|---|-------------------------|
| 1   | _ | 120°C / 24hrs           |
| 2   |   | 23℃ / 50%R.H. / 48hrs   |
| 3   |   | 40°C / 90%R.H. / 48hrs  |





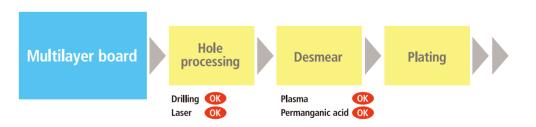

• Transmission loss is very stable in bending condition.




#### Lamination

• Kuraray's FCCL shows excellent peel strength and dimensional stability in both multilayer stack up with low Dk Bonding Sheet and ALL LCP multilayer stack up.




|      | Lamination        | Peel<br>Strength<br>(N/mm) | Peeling<br>interface | Solder Float<br>288℃, 30sec | Dimensional Stability (%) |    |               |    |              |     |
|------|-------------------|----------------------------|----------------------|-----------------------------|---------------------------|----|---------------|----|--------------|-----|
|      | Top Temp.<br>(°C) |                            |                      |                             | After Lamination          |    | After Etching |    | After Baking |     |
|      |                   |                            |                      |                             | MD                        | TD | MD            | TD | MD           | TD  |
| No.1 | 180               | ≥0.8                       | a                    | Pass                        | 0±0.1                     |    | 0±0.1 0±0.1   |    | 0 ±          | 0.1 |
| No.2 | 300               | ≥0.8                       | <b>b</b>             | Pass                        | 0±0.1                     |    | 0±0.1 0±0.1   |    | 0 ±          | 0.1 |

<sup>\*</sup> Data using Qxx-05012 grade.



| Accessories    | Effect                                          |  |
|----------------|-------------------------------------------------|--|
| SUS Plate      |                                                 |  |
| Press Pad      | Pressure uniformity of heat platen              |  |
| SUS Plate      |                                                 |  |
| Aluminum Foil① | Release layer between HDPE and SUS              |  |
| HDPE           | Reducing resin flow                             |  |
| Aluminum Foil2 | Cancel the shrinkage of HDPE in cooling process |  |
| PTFE           | Release film                                    |  |

### **Manufacturing process**



By choosing suitable pretreatment chemicals and conditions, it is possible to functionalize and improve the surface roughness of Via Hole for better adhesion.

[Cross-section observation of coupon]

|             | After plating | After hot-oiling reliability test |
|-------------|---------------|-----------------------------------|
| Condition A | ОК            | OK C                              |
| Condition B | Open Failure  |                                   |

<sup>\*</sup> Size of each accessories should be same for pressure uniformity.
\* Number of HDPE film depends on the coupon thickness.