

LIQUID CRYSTAL POLYMER FIBER TECHNOLOGY

ABOUT KURARAY

Kuraray is a world leader in the manufacture of specialty fibers, chemicals and functional materials. We are committed to our customers and driven to develop products that ensure quality and value while differentiating our customers from competition.

kuraray

Vectran™

ABOUT Vectran™

Pound for pound Vectran[™] is five times stronger than steel and ten times stronger than aluminum.

CHARACTERISTICS OF Vectran™

- High strength and modulus
- Excellent creep resistance
- Abrasion resistance
- Excellent flex/fold characteristics
- Minimal moisture absorption
- Chemical resistance
- Low coefficient of thermal expansion (CTE)
- High dielectric strength
- Outstanding cut resistance
- Vibration damping characteristics
- High impact strength

APPLICATIONS

- Ropes and cables
- Recreation and leisure
- Aerospace
- Industrial
- Electronics

FIBER CHEMISTRY

Vectran[™] offers a balance of properties unmatched by other high performance fibers. LCP polymer molecules are stiff, rod-like structures organized in ordered domains in both solid and melt states. These oriented domains lead to anisotropic behavior in the melt state, thus the term "liquid crystal polymer."

Vectran[™] HAS EXCELLENT FIBER TENSILE PROPERTIES:

Vectran[™] is different from other high performance fibers such as aramid and ultra-high molecular weight polyethylene (HMPE). Vectran[™] is thermotropic, it is melt-spun and it melts at high temperatures.

TENSILE PROPERTIES

Vectran[™] offers unique properties as compared to traditional metals in terms of strength-to-weight ratios.

Vectran[™] VS. TRADITIONAL MATERIALS

Material	Density (g/cm ³)	Tensile Strength (GPa)	Specific Strength (km*)	Tensile Modulus (GPa)	Specific Modulus (km**)
Vectran™ NT	1.4	1.1	79	52	3,700
Vectran™ HT	1.4	3.2	229	75	5,300
Vectran™ UM	1.4	3.0	215	103	7,400
Titanium	4.5	1.3	29	110	2,500
Stainless Steel	7.9	2.0	26	210	2,700
Aluminum	2.8	0.6	22	70	2,600

* Specific strength = Strength/Density (also divided by force of gravity for SI units). Also known as breaking length, the length of fiber that could be held in a vertical direction without breaking.

** Specific modulus = Modulus/Density (also divided by force of gravity for SI units). This measure increases with increasing stiffness and decreasing density.

MECHANICAL PROPERTIES OF Vectran[™] FILAMENT YARN (AVERAGE)

	нт				UM			
	GPa	g/ denier	ksi	GPa	g/ denier	ksi		
Break Strength	3.2	25.9	465	3	24.4	440		
Initial Modulus	75	600	10,760	103	838	15,020		
Elongation at Break, %	3.8			2.8				

FINISHING

Vectran[™] fiber is available in a variety of sizing options. Please contact your Vectran[™] sales representative to right-size your finish for your unique application.

THERMAL PROPERTIES

Vectran[™] HT has excellent thermal properties especially in regard to thermal loading.

	Vectran™		Ara	mid
	нт	UM	Standard	High Modulus
LOI	28	30	30	30
M.P., °C	None	350	None	None
HAS (Hot air shrink, 180 °C, 30 minutes), %	<0.2	<0.1	<0.2	<0.1
BWS (Boiling water shrinkage, 100 °C, 30 minutes), %	<0.2	<0.1	<0.2	<0.1
50% Strength Retention Temperature, °C	145	150	400	230
TGA (20% weight loss), °C	>450	>450	>450	>450

FIBER THERMAL PROPERTIES

EQUILIBRIUM MOISTURE REGAIN

Tempe-	Relative	Vect	ran™	Aramic	I (PPT)
rature (°C)	Humidity (%)	нт	UM	Standard	High Modulus
20	65	<0.1	<0.1	4.2	4.1
20	80	<0.1	<0.1	4.8	4.8
20	90	<0.1	<0.1	5.4	5.5

Vectran[™] AT HIGH TEMPERATURE

Mechanical property retention during or after thermal exposure is a key concern in many applications. The tensile strength of Vectran[™] at temperature should be used as a reference in selecting process conditions.

For high temperature processing at low mechanical load, Vectran[™] will have excellent strength after processing, superior to aramids.

Vectran[™] RESISTANCE TO CYCLIC THERMAL LOADS

The resistance of Vectran[™] to cyclic thermal loads at higher temperatures is superior to aramids and increases product lifetimes.

Vectran[™] AT LOW TEMPERATURE

Evaulated by ILC Dover during the design of the airbag system for the 1997 Mars Pathfinder mission, ILC reported Vectran™ increased in strength in tests at -62°C, leading to its selection for the airbag fabric and external assembly tendons.

Vectran[™] HT CTE AT VARIOUS TEMPERATURES

Temperature	Fiber Longitudin a (m/m- °C	al Direction CTE (x 10 ⁻⁰⁶)
Range	Vectran™ HT	Standard Aramid
-150 to 100°C	-4.8	-4.9
100 to 200°C	-11.6	-5.8

THERMAL CONDUCTIVITY OF Vectran[™] HT

	Divertion	Temperature	Density	Specific Heat	Thermal Conductivity	
	Direction	°C	g/cm³	J/kg-°K	W/m-°K	10 ⁻³ cal/cm-sec-°C
		23	1.4	1,100	1.5	3.5
vectran [®] HT	Longitudinai	100	1.4	1,420	2.0	4.7
Standard Aramid	Longitudinal	23	1.44	1,230	2.5	5.9

OUTGASSING AND OFFGASSING

For aerospace applications, materials are screened for outgassing and offgassing properties. Outgassing, the release of chemicals from non-metallic substances in vaccum conditions, and offgassing, the release of chemicals from materials at ambient or high pressure, are important in assessing the use of materials in these unique environments. Vectran[™] has excellent out- and offgassing characteristics.

OFFGASSING AND OUTGASSING TEST RESULTS FOR Vectran[™] HT FIBER

Vectran™ Fiber with:	TML%	CVCM%	WVR%	Toxic Hazard Index
No finish	*	0.00	0.00	2.226**
T97 finish	*	0.00	0.00	0.009
T150 finish	0.30	0.00	0.00	0.015

* Test results exceeded precision limits required to produce a statistically meaningful average. individual samples measurements: fiber without finish, 0.21 and 0.07%; fiber with T97 finish, 0.13 and 0.19%.

 ** The contribution of benzyl alchohol to this T-value is 2.214. the concentration in the sample was $0.31\mu g/g$; no measured SMAC value was available, therefore a conservatively low value of $0.14\mu g/g$ was assumed.

CHEMICAL RESISTANCE

Vectran[™] fiber is resistant to organic solvents, some acids of >90% concentration, and bases of <30% concentration. Chemical resistance is important in protective apparel use, garment care and upkeep. The superior bleach resistance of Vectran[™], shown below at two concentrations, and dimensional and chemical stability simplify garment care.

TENACITY RETENTION Vectran™ HT VS. ARAMID

CHEMICAL RESISTANCE OF Vectran[™] FIBER

			Concentration	Tempe-	Time	Fiber Sti	rength Reten	tion (%)
	Reagent	Formula	(%)	rature (°C)	(hours)	Vectran™ HT	Vectran™ UM	Aramid (reg.)
DS	Hydrochloric Acid	HCI	1	50 50	100	100 84	96	93 16
CII			10	70	10,000	96	-	73
٩	Culturio Acid		10	70	10	93	-	26
		п ₂ 50 ₄	1	50 50	1,000	99	- 99	98 88
			10	50 20	10,000	100	-	28 94
			10	20	10,00	90	-	69
			10 10	50 50	100 10,00	98 82	-	86 12
			10	70	10	94	-	79
			10	100	100	93	-	40
	Nitric Acid	NHO ₃	1	50	100	99	100	83
			1	50 50	10,000	97 86	-	29 14
			10	70 70	1	95	-	60 5
	Phosphoric Acid		10	70	100	93	-	46
	Formic Acid		90	20	100	91	-	93
	Acotic Acid		90	70	100	93	-	42
			40 40	100	100	94 90	-	22
LIS	Sodium Hydroxide (Caustic Soda)	NaOH	10 10	20 70	100 20	97 66	-	68 21
KAI	Calcium Hydroxide	Ca(OH) ₂	saturated	50	100	96	86	93
AL			saturated saturated	50 50	1,000	85 9	-	60 20
	Cement Extract		-	20	10	99	-	98 69
			-	50	10,000	99	-	94
			-	50 50	100 10,000	97 6	-	90 20
TS	Acetone	CH ₃ COCH ₃	100	20	100	100	100	99
EN	Benzene	C ₆ H ₆	100	70	10,000	95	-	93
NC N	Carbon Tetrachloride	H ₂ SO ₄	100	20	100	96	-	95
SO	Ether		100	20	100	98	-	95
NIC	Ethyl Acetate		100	20	100	98	-	96
GA			100	20	10,000	98	-	90
0 Ř	Methanol	CH ₃ CH ₂ OH	100	20	100	96	-	94
	Perchloro Ethylene		100	20	100	95	-	96
	Ethylene Glycol	нсосн сн он	50	100	100	96	-	98
			50	100	100	79	-	74
	Ammonia Solution	NH ₃	10	70	24	35	-	95
LTS	Sodium Carbonate	Na ₂ CO ₃	1	50	10,000	96 80	- 100	67
SA	Sodium Chloride	NaCl	1	50 50	100 10,000	100 95	99 99	100 97
	Copper Sulfate	CuSO ₄	1	50 50	100 10.000	101	100 100	100 68
	Zinc Chloride	ZnCl ₂	1	50 50	100	98 85	99	99 97
OILS	Mineral Oil		100 100	20 20	100 10,000	100 100	100	100 100

CREEP AND STRESS RELAXATION

As a critical design component in material applications that need long-term dimensional stability, Vectran[™] performance is superior to competitive materials. These characteristics are important in applications like sailcloth, halyards, bowstring, marine cables and robotic tendons.

CREEP RUPTURE

STRESS RELAXATION (13 MM DIA WIRELAY ROPE)

Whitehill Manufacturing Corporation WMCJETS/JETSTRAN I-A VEC 1/2" Rope

EXTERNAL ABRASION RESISTANCE

Abrasion test comparisons of Vectran[™] and aramid braids were conducted by a high-performance rope and cable company using the test shown.

With or without marine finish on the braid, Vectran™ outperforms aramid materials.

YARN-ON-YARN ABRASION RESISTANCE

Fatigue resistance can be measured using the rope and cordage industry standard known as the yarnon-yarn abrasion test (ie. The Cordage Institute test method CI-1503). This test simulates abrasion of adjacent yarns inside a rope or rope-splice during flexure. Using this test, the combination of wet and dry abrasion resistance by Vectran[™] outperforms competitive materias like aramids and HMPEs.

COMPARATIVE TESTING OF YARN-ON-YARN ABRASION RESISTANCE

Vere	Average Cyc	es-to-Failure
ram	Dry	Wet
Vectran™ T97, 1500D	16,672	21,924
Aramid 1, 1500D	1,178	705
Aramid 2, 1500D	1,773	759
Aramid 3, 1500D	974	486
PBO, 1500D	2,153	-
HMPE, 1500D	8,518	23,619

Test Method CI-1503: 1.5 wraps, 500g load, 66 cycles/min, no twist.

YARN-ON-YARN ABRASION OF Vectran[™] HT

	Cycles-to-Failure*			
	Dry Test	Wet Test	Dry Test	Wet Test
Test Load	500 g	500 g	800 g	800 g
Vectran™ HT	12,987	30,519	3,581	16,524
Aramid	939	3,029	422	1,719

* 1500 denier yarns, no twist, 1 wrap.

FLEX FATIGUE

Flexural fatigue is a critical concern in many applications where yarns or fabrics are subject to repeated bending or creasing. Examples include ropes, sailcloth, inflatable and/or temporary structures, etc. Improving the service life of products by increasing flex fatigue resistance is an important driver for the use of Vectran[™] fibers.

FATIGUE TESTING OF COATED FABRICS

Base Material	Tenacity Loss at Failure Location 100 Cycles, %	Failure Location
Vectran™	0.8	Away from Fatigued Crease
Aramid	22.9	At Crease

FLEX FATIGUE RESULTS ON 1500D YARN

Material	Cycles-to- Failure
Vectran™ T97	115,113
Aramid 1	5,114
Aramid 2	40,666
Aramid 3	1,383
РВО	23,821

Test Conditions: Tinius Olsen tester, ASTM D2176-97a, modified for yarn, 2 kg weight

FLEX FATIGUE RESULTS **ON 2 MM CORDS**

Material	Cycles-to- Failure
Vectran™ T117	41,909
Aramid 1	2,115
Aramid 2	14,963
Aramid 3	8,143
РВО	25,158

Construction: Parallel core/extruded jacket. Test Conditions: 45 mm dia pulley, 45 kg test load, 58 cycles/min, 5 tests/sample on cyclic test machine

BEND TOLERANCE

Tolerance to bending around small radii is important in ropes and cables, as it allows the use of smaller running gears or termination hardware. Aerospace and rope manufacturers conducted pin diameter tests on Vectran[™] braid and wire rope, respectively.

BREAK STRENGTH VS. D/dWIRE ROPE CONSTRUCTION

IMPACT RESISTANCE

Vectran[™] is unique in regards to other materials in that it provides a balance of properties rarely found in synthetic fibers: minimal moisture retention, thermal stability, and excellent impact resistance. Using the Dynatup Impact Test, Vectran[™] performed far better than competitive materials.

IMPACT RESISTANCE COMPARISON OF HIGH-PERFORMANCE FABRICS

Impact Energy (inch lbs.)	Vectran™	Aramid	
25	No	No	
30	No	No	
50	No	Penetration	
75	No	Penetration	
100	No	Penetration	
125	Penetration	Penetration	

VIBRATION DAMPING

Vectran[™] provides excellent damping properties making it ideal for sporting good and audio component applications.

Periodic Damping of single fibers Reinforced Composite (Matrix Resin: Epoxy)

UV RESISTANCE

UV resistance of products made from high performance fibers is highly dependent upon a number of variables, including final product form. These ranges are dependent on rope vs fabric; filament and yarn size; finishes, coatings etc. Overall, Vectran[™] is comparable to competitive materials in their tenacity retention after UV exposure.

Rope: 6mm Diameter, 12x1 Braid Test Method: AATCC #16E (Xenon-Arc Lamp)

TWIST

Twisting is the process of combining filaments into yarn by twisting them together or combining two or more parallel singles yarns (spun or filament) into plied yarns or cords. Twisting improves uniformity and smoothness, and can be used to optimize strength and elongation.

RADIATION EXPOSURE

LCPs are transparent to microwave energy and are virtually unaffected by high levels of radiation. Vectran™ shares this characteristic and is stable in high X-ray exposure environments.

Vectran[™] RADIATION EXPOSURE

Sample	Twist (t/m)	Denier (dtex)	Before Exposure Tenacity (g/d)	Elongation (%)
Vectran™ HT	80	1,696	28.9	3.8
Vectran™ NT	30	1,589	23.9	2.6
Standard Aramid	30	1,748	22.7	4.5

Sample	Twist (t/m)	Denier (dtex)	After Exposure Tenacity (g/d)	Elongation (%)	Strength Resistance (%)
Vectran™ HT	80	1,691	28.4	4.3	98
Vectran™ NT	80	1,599	26.3	3.1	110
Standard Aramid	80	1,705	24.4	4.3	108

Source: Soft X-ray Amount of radiation exposure: 9.6xE+06 (mR/h at 1m) Exposure time: 30 minutes This energy is equivalent to the 1800 times levels used in medical soft X-ray photography

CUT RESISTANCE

Vectran[™] is an excellent choice in cut resistant applications due to its performance in launderability compared to competitive materials.

Cut Resistance by HOSDB

HEADQUARTERS 2625 Bay Area Blvd., Suite 600 Houston, TX 77058

> Tel: (800) 423-9762 Fax: (281) 283-1722

www.kuraray.us.com

KURARAY Vectran[™] PLANT 460-E Greenway Industrial Drive Fort Mill, SC 29708

Rev 5/2014

Vectran[™] is a registered trademark of Kuraray Co., Ltd., Tokyo, Japan. All information supplied by or on behalf of Kuraray America, Inc. or Vectran[™] in relation to its products, data, recommendations or otherwise is supported by research and is believed reliable, but neither Kuraray America, Inc. or Vectran[™] give any warranty of any kind, expressed or implied, including but not limited to, those of correctness, completeness, merchantability, or fitness of use or purpose and neither Kuraray America, Inc. or Vectran[™] assume any liability whatsoever in respect of application, processing or use of aforementioned information, data and products. Any information does not release the user from performing his or her own analysis of fitness of use and suitability for the intended purpose. The user accepts all liability in respect of or resulting from the application, processing, use of, or reliance on, the aforementioned information or products or any consequence thereof. Unless otherwise noted, data contained in this publication was developed internally by Kuraray Company.